Content Warning

The black hole鈥檚 extreme gravitational field redirects and distorts light coming from different parts of the disk, but exactly what we see depends on our viewing angle. The greatest distortion occurs when viewing the system nearly edgewise.

As our viewpoint rotates around the black hole, we see different parts of the fast-moving gas in the accretion disk moving directly toward us. Due to a phenomenon called "relativistic Doppler beaming," gas in the disk that's moving toward us makes that side of the disk appear brighter, the opposite side darker. This effect disappears when we're directly above or below the disk because, from that angle, none of the gas is moving directly toward us.

When our viewpoint passes beneath the disk, it looks like the gas is moving in the opposite direction. This is no different that viewing a clock from behind, which would make it look like the hands are moving counter-clockwise.

CORRECTION: In earlier versions of the 360-degree movies on this page, these important effects were not apparent. This was due to a minor mistake in orienting the camera relative to the disk. The fact that it was not initially discovered by the NASA scientist who made the movie reflects just how bizarre and counter-intuitive black holes can be!

Credit: NASA鈥檚 Goddard Space Flight Center
Jeremy Schnittman (NASA/GSFC)
Scott Wiessinger (USRA)
Francis Reddy (University of Maryland College Park)
Francis Reddy (University of Maryland College Park)

>>https://svs.gsfc.nasa.gov/13326#section_credits

#space #blackhole #astrophysics #astrophotography #photography #astronomy #science #nature#NASA#ESA

Zoomed into the central region, highlighting the photon ring, with 360-degree rotation and a pause at almost edge on. Credit: NASA鈥檚 Goddard Space Flight Center/Jeremy Schnittman
360-degree rotation and a pause when the view is almost edge on; uses a square frame to show the complete accretion disk. Credit: NASA鈥檚 Goddard Space Flight Center/Jeremy Schnittman
+ -

Content Warning

IXPE Explores a Black Hole Jet
Illustration Credit: NASA, Pablo Garcia
https://www.nasa.gov/

Explanation:
How do black holes create X-rays? Answering this long-standing question was significantly advanced recently with data taken by NASA鈥檚 IXPE satellite. X-rays cannot exit a black hole, but they can be created in the energetic environment nearby, in particular by a jet of particles moving outward. By observing X-ray light arriving from near the supermassive black hole at the center of galaxy BL Lac, called a blazar, it was discovered that these X-rays lacked significant polarization, which is expected when created more by energetic electrons than protons. In the featured artistic illustration, a powerful jet is depicted emanating from an orange-colored accretion disk circling the black hole. Understanding highly energetic processes across the universe helps humanity to understand similar processes that occur on or near our Earth.
https://www.nasa.gov/missions/ixpe/nasas-ixpe-reveals-x-ray-generating-particles-in-black-hole-jets/
https://apod.nasa.gov/apod/ap031128.html
https://apod.nasa.gov/apod/ap240507.html
https://apod.nasa.gov/apod/ap250504.html
https://en.wikipedia.org/wiki/Blazar
https://en.wikipedia.org/wiki/Polarization_(waves)

https://en.wikipedia.org/wiki/BL_Lacertae

https://home.cern/science/physics
https://ui.adsabs.harvard.edu/abs/2025arXiv250501832A/abstract
https://science.nasa.gov/ems/11_xrays/
https://pwg.gsfc.nasa.gov/Education/whelect.html
https://home.cern/news/news/physics/proton-century
https://chandra.si.edu/art/xray/

https://spaceplace.nasa.gov/aurora/en/

https://apod.nasa.gov/apod/ap250509.html

#space #blackhole #astroart #astronomy #physics #photography #science #nature#NASA

2025 May 9
An artist's illustration of what the surroundings of the supermassive black hole at the center of BL Lac is shown. A white jet protrudes horizontally toward the bottom of the image, emanating from a orange accretion disk surrounding a black hole. Please see the explanation for more detailed information.

IXPE Explores a Black Hole Jet
Illustration Credit: NASA, Pablo Garcia

Explanation: 
How do black holes create X-rays? Answering this long-standing question was significantly advanced recently with data taken by NASA鈥檚 IXPE satellite. X-rays cannot exit a black hole, but they can be created in the energetic environment nearby, in particular by a jet of particles moving outward. By observing X-ray light arriving from near the supermassive black hole at the center of galaxy BL Lac, called a blazar, it was discovered that these X-rays lacked significant polarization, which is expected when created more by energetic electrons than protons. In the featured artistic illustration, a powerful jet is depicted emanating from an orange-colored accretion disk circling the black hole. Understanding highly energetic processes across the universe helps humanity to understand similar processes that occur on or near our Earth. 

Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Amber Straughn Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC,
NASA Science Activation
& Michigan Tech. U.
2025 May 9 An artist's illustration of what the surroundings of the supermassive black hole at the center of BL Lac is shown. A white jet protrudes horizontally toward the bottom of the image, emanating from a orange accretion disk surrounding a black hole. Please see the explanation for more detailed information. IXPE Explores a Black Hole Jet Illustration Credit: NASA, Pablo Garcia Explanation: How do black holes create X-rays? Answering this long-standing question was significantly advanced recently with data taken by NASA鈥檚 IXPE satellite. X-rays cannot exit a black hole, but they can be created in the energetic environment nearby, in particular by a jet of particles moving outward. By observing X-ray light arriving from near the supermassive black hole at the center of galaxy BL Lac, called a blazar, it was discovered that these X-rays lacked significant polarization, which is expected when created more by energetic electrons than protons. In the featured artistic illustration, a powerful jet is depicted emanating from an orange-colored accretion disk circling the black hole. Understanding highly energetic processes across the universe helps humanity to understand similar processes that occur on or near our Earth. Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP) NASA Official: Amber Straughn Specific rights apply. NASA Web Privacy Policy and Important Notices A service of: ASD at NASA / GSFC, NASA Science Activation & Michigan Tech. U.

Content Warning

Animation: Spiral Disk around a Black Hole
Illustrated Animation Credit: ESA, NASA, Hubble, M. Kornmesser
https://esahubble.org/projects/anniversary/production_team/
https://www.spacetelescope.org/
https://www.esa.int/
https://www.nasa.gov/

Explanation:
What would it look like to orbit a black hole? Many black holes are surrounded by swirling pools of gas known as accretion disks. These disks can be extremely hot, and much of the orbiting gas will eventually fall through the black hole's event horizon -- where it will never be seen again. The featured animation is an artist's rendering of the curious disk spiraling around the supermassive black hole at the center of spiral galaxy NGC 3147. Gas at the inner edge of this disk is so close to the black hole that it moves unusually fast -- at 10 percent of the speed of light. Gas this fast shows relativistic beaming, making the side of the disk heading toward us appear significantly brighter than the side moving away. The animation is based on images of NGC 3147 made recently with the Hubble Space Telescope.

!>> https://apod.nasa.gov/apod/ap190820.html

https://apod.nasa.gov/apod/ap190820.html

#space #blackhole #astronomy #astrophysics #science#NASA

2019 August 20 Animation: Spiral Disk around a Black Hole Illustrated Animation Credit: ESA, NASA, Hubble, M. Kornmesser Explanation: What would it look like to orbit a black hole? Many black holes are surrounded by swirling pools of gas known as accretion disks. These disks can be extremely hot, and much of the orbiting gas will eventually fall through the black hole's event horizon -- where it will never be seen again. The featured animation is an artist's rendering of the curious disk spiraling around the supermassive black hole at the center of spiral galaxy NGC 3147. Gas at the inner edge of this disk is so close to the black hole that it moves unusually fast -- at 10 percent of the speed of light. Gas this fast shows relativistic beaming, making the side of the disk heading toward us appear significantly brighter than the side moving away. The animation is based on images of NGC 3147 made recently with the Hubble Space Telescope. Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP) NASA Official: Phillip Newman Specific rights apply. NASA Web Privacy Policy and Important Notices A service of: ASD at NASA / GSFC & Michigan Tech. U.